On the Proximal Jacobian Decomposition of ALM for Multiple-Block Separable Convex Minimization Problems and Its Relationship to ADMM

نویسندگان

  • Bingsheng He
  • Hong-Kun Xu
  • Xiaoming Yuan
چکیده

The augmented Lagrangian method (ALM) is a benchmark for solving convex minimization problems with linear constraints. When the objective function of the model under consideration is representable as the sum of some functions without coupled variables, a Jacobian or Gauss-Seidel decomposition is often implemented to decompose the ALM subproblems so that the functions’ properties could be used more effectively in algorithmic design. The Gauss-Seidel decomposition of ALM has resulted in the very popular alternating direction method of multipliers (ADMM) for two-block separable convex minimization models and recently it was shown in [9] that the Jacobian decomposition of ALM is not necessarily convergent. In this paper, we show that if each subproblem of the Jacobian decomposition of ALM is regularized by a proximal term and the proximal coefficient is sufficiently large, the resulting scheme to be called the proximal Jacobian decomposition of ALM, is convergent. We also show that an interesting application of the ADMM in [20], which reformulates a multiple-block separable convex minimization model as a two-block counterpart first and then applies the original ADMM directly, is closely related to the proximal Jacobian decomposition of ALM. Our analysis is conducted in the variational inequality context and is rooted in a good understanding of the proximal point algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving an ADMM-like Splitting Method via Positive-Indefinite Proximal Regularization for Three-Block Separable Convex Minimization

Abstract. The augmented Lagrangian method (ALM) is fundamental for solving convex minimization models with linear constraints. When the objective function is separable such that it can be represented as the sum of more than one function without coupled variables, various splitting versions of the ALM have been well studied in the literature such as the alternating direction method of multiplier...

متن کامل

Positive-Indefinite Proximal Augmented Lagrangian Method and its Application to Full Jacobian Splitting for Multi-block Separable Convex Minimization Problems

The augmented Lagrangian method (ALM) is fundamental for solving convex programming problems with linear constraints. The proximal version of ALM, which regularizes ALM’s subproblem over the primal variable at each iteration by an additional positive-definite quadratic proximal term, has been well studied in the literature. In this paper, we show that it is not necessary to employ a positive-de...

متن کامل

Solving Multiple-Block Separable Convex Minimization Problems Using Two-Block Alternating Direction Method of Multipliers

Abstract. In this paper, we consider solving multiple-block separable convex minimization problems using alternating direction method of multipliers (ADMM). Motivated by the fact that the existing convergence theory for ADMM is mostly limited to the two-block case, we analyze in this paper, both theoretically and numerically, a new strategy that first transforms a multiblock problem into an equ...

متن کامل

On Full Jacobian Decomposition of the Augmented Lagrangian Method for Separable Convex Programming

The augmented Lagrangian method (ALM) is a benchmark for solving a convex minimization model with linear constraints. We consider the special case where the objective is the sum of m functions without coupled variables. For solving this separable convex minimization model, it is usually required to decompose the ALM subproblem at each iteration into m smaller subproblems, each of which only inv...

متن کامل

A Convergent 3-Block Semi-Proximal ADMM for Convex Minimization Problems with One Strongly Convex Block

In this paper, we present a semi-proximal alternating direction method of multipliers (ADMM) for solving 3-block separable convex minimization problems with the second block in the objective being a strongly convex function and one coupled linear equation constraint. By choosing the semi-proximal terms properly, we establish the global convergence of the proposed semi-proximal ADMM for the step...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2016